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We study the shape of the interface in a partially filled horizontal cylinder which
is rotating about its axis. Two-dimensional steady solutions for the interface height
are examined under the assumptions that the filling fraction is small, inertia may be
neglected, and the fluid forms a continuous film covering the surface. Three different
regimes of steady solutions have been reported in the literature, corresponding to
limits in which the ratio of gravitational to viscous forces (as defined in the text) is
small, moderate or large. In each case, solutions have only been described analytically
in the limit that surface tension effects are negligible everywhere. We use analytical
and numerical methods, include surface tension and study steady solutions in a regime
when the ratio of gravitational to viscous forces is large. This solution comprises a
fluid pool that sits near the bottom of the cylinder and a film that coats the sides and
top of the cylinder, the thickness of which can be determined by Landau–Levich–
Derjaguin type arguments. We also examine the effect of surface tension on the
solutions in the limits of the ratio of gravity to viscous forces being moderate and
small.

1. Introduction
The coating of moving substrates arises in many industrial applications owing to

the need to control, protect and functionalize surfaces. The subject provides entry
into a number of different fluid mechanical problems involving free boundaries. We
address one problem in this class: the coating of a Newtonian fluid on the interior
of a steadily rotating horizontal cylinder. Previous analytical and numerical studies
have, for the most part, neglected the influence of surface tension, as we summarize
below. Here we emphasize the role of surface tension and provide both analytical
and numerical results illustrating the connection with the Landau–Levich–Derjaguin
class of problems.

Much work associated with coating horizontal rotating cylinders was initiated by
Moffatt (1977), who investigated the shape of the thin film that completely coats the
outside of a horizontal rotating cylinder. Experimental and numerical work on the
interface shape of a continuous film coating the interior of a rotating cylinder has
described many interesting effects, including three-dimensional instabilities and time-
periodic flows (Balmer 1970; Hosoi & Mahadevan 1999; Karweit & Corrsin 1975;
Melo 1993; Thoroddsen & Mahadevan 1997). Two-dimensional (axially uniform)
steady states are also observed experimentally, and analytical studies have been
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2 � A2ρgR/µΩ � 5 A2ρgR/µΩ � 5
A2ρgR/µΩ � 2 (accumulation of fluid (thin film pulled out

(nearly uniform film) on rising side of cylinder) from pool in bottom)

Zero Ruschak & Scriven Benjamin et al. Tirumkudulu & Acrivos
surface (1976) (A) (1993) (A,N) (2001) (A,N)
tension Johnson (1988) (A,N)

Moffatt (1977) (A)
O’Brien & Gath (1988) (A)
Ruschak & Scriven

(1976) (A,N)
Tirumkudulu & Acrivos

(2001) (A,N)
Wilson & Williams

(1997) (N)

Non-zero Benjamin et al. Benjamin et al. Benjamin et al.
surface (1993) (E) (1993) (E) (1993) (E)
tension Ruschak & Scriven Thoroddsen & Mahadevan Thoroddsen &

(1976) (A) (1997) (E) Mahadevan (1997) (E)
Orr & Scriven (1978) (N) Tirumkudulu & Acrivos Tirumkudulu & Acrivos
Rajagopalan et al. (2001) (N,E) (2001) (A,N,E)

(1992) (A,N) Hosoi & Mahadevan
(1999) (A,N)

Melo (1993) (E)
Wilson & Williams

(1997) (N)
This paper (A,N) This paper (A,N) This paper (A,N)

Table 1. A characterization of the parameter regimes previously studied for two-dimensional
steady flow, and those studied in this paper. A denotes analytical work, N numerical work
and E experimental work.

restricted to these (Johnson 1988; Moffatt 1977; O’Brien & Gath 1988; Ruschak &
Scriven 1976), with the exception of unpublished work by Benjamin, Pritchard &
Tavener (1993). Research in this area has overlapped work on coating the outside
of a rotating cylinder, which is similar in certain regions of parameter space (Duffy
& Wilson 1999; Hansen & Kelmanson 1994; Hinch & Kelmanson 2002; Kelmanson
1995; Peterson, Jimack & Kelmanson 2001; Preziosi & Joseph 1988; Pukhnachev
1977).

For coating flows inside a rotating horizontal cylinder, previous analytical studies
of two-dimensional steady-state solutions describing the interface height have focused
on limits in which surface tension is negligible (table 1). Since the complete lubrication
equation for the interface height is a third-order nonlinear differential equation in
which the surface tension effects represent a singular perturbation, we expect that
surface tension may have a significant effect on the qualitative and quantitative
behaviours of the system, at least in some regions of parameter space. We present a
combination of analytical and numerical results that describe solutions within and
outside the restricted parameter range studied previously, and which account for the
effect of surface tension.

We measure the ratio of the gravitational to the viscous forces by the dimensionless
parameter λ = A2ρgR/µΩ where A is the filling fraction of fluid inside the cylinder,
ρ is the density, g is the gravitational constant, R is the radius of the cylinder, µ

is the viscosity, and Ω is the rotation rate. Qualitatively different solutions have
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been reported in the literature in the three regions 0< λ� 2 (‘fast’ rotation), 2 � λ� 5
(‘moderate’ rotation) and λ� 5 (‘slow’ rotation). In each case, there are also restrictions
on the value of the Bond number B = ρgR2/Aγ for surface tension effects (γ ) to be
negligible.

Most theoretical work has utilized lubrication theory, valid when the filling fraction
A � 1. Although the full lubrication equation is a third-order ordinary differential
equation, it has been common for researchers to study a truncated equation in
which only two viscous terms and one gravitational term are retained, and all
surface tension terms are neglected. Only the neglected terms involve derivatives
and the truncated equation is algebraic. The solutions to the truncated equation
are accurate provided the gradients do not become large so that the neglected
terms which involve derivatives are always small, which is true when λ< 2. The
truncated algebraic equation yields discontinuous solutions when 2 � λ� 5 and no
solutions when λ� 5. Tirumkudulu & Acrivos (2001) recognized that including the
most significant extra gravity term, which involves the first derivative of the interface
height, results in a continuous solution for all λ (see equation (2.13) and related
discussion). In this paper we include the influence of the surface tension term and study
regimes where the effect of surface tension modifies the continuous solution found by
Tirumkudulu & Acrivos (2001).

We show that the inclusion of surface tension may be particularly significant in
the limit λ� 5. Qualitatively, in this limit the solution always has the appearance
of a pool of fluid lying in the bottom of the cylinder with a thin, almost uniform,
film coating the sides and top. In the solution found by Tirumkudulu & Acrivos
(2001), surface tension is entirely negligible and the dimensional film thickness scales
as (µΩR)1/2A−1/6(ρg)−1/2. In this paper we describe quantitatively different solutions
in which surface tension forces are important in setting the thickness of the film that
coats the sides and top of the cylinder. Physically, the large curvature where the film
is extracted from the pool leads to a capillary pressure gradient that restricts the fluid
flux in the film. The detailed analysis leads to a prediction of film thickness which
scales as (µΩR)2/3A−1/3γ −1/6(ρg)−1/2 or (µΩ)2/3R7/15γ −1/15(ρg)−3/5A−2/5, depending
on the geometry. Once the role of surface tension and geometry are recognized, the
analysis is similar to that of Landau & Levich (1942) and Derjaguin (1943) who
described the thickness of the fluid film deposited on a plate or cylinder withdrawn
from a bath at constant velocity. Whereas the results of Tirumkudulu & Acrivos
(2001) are valid at high effective capillary numbers, defined in the main text, our
results are valid at low effective capillary numbers.

In the limit 2 � λ� 5, when viscous and gravitational forces are of the same order
of magnitude, discontinuous solutions arise when the ‘extra’ gravitational and surface
tension terms are neglected (see equation (2.13) below). Tirumkudulu & Acrivos (2001)
showed that solutions are continuous when the most important extra gravitational
term is included. We include both the most important extra gravitational terms and
surface tension and consider the effect of surface tension on the solution. Finally,
when 0< λ� 2 and viscous forces dominate gravitational forces, surface tension has
little effect.

We consider only axially uniform (two-dimensional) solutions, although there are
regions in which the two-dimensional steady solutions are not stable and instead
the physical solution is three-dimensional, time-periodic or even chaotic. Many such
states were documented by Benjamin et al. (1993) and Thoroddsen & Mahadevan
(1997) and others. However, each of the solutions we present is observed in certain
regions of parameter space and we comment on this in § 5.
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Figure 1. Thin-film flow inside a rotating horizontal cylinder.

The second section describes a lubrication model and derives the equation for
the interface height. In § § 3 and 4 we present and discuss our results for the two
cases when surface tension effects are significant, λ� 5 and 2 � λ� 5. Owing to
the nonlinearity of the interface-shape equation, it has not been possible to obtain
analytical solutions in all cases. However, we are able to find asymptotic scaling results
instead. In § 5 we discuss our results, their stability, and present our conclusions. Four
appendices include basic details of the analysis, and provide comparisons with existing
research. Appendix A contains the derivation of the flow equations and Appendix B
a description of the numerical methods used. We discuss some details of the slow-
rotation solution described by Tirumkudulu & Acrivos (2001) in Appendix C, and in
Appendix D we include a comparison between numerical results and the theoretical
results established by Ruschak & Scriven (1976) for the case λ� 2.

2. Model
We consider the film shape inside a partially filled, horizontal rotating cylinder.

Our focus is on thin films so that a lubrication analysis is valid, and we restrict
our attention to steady two-dimensional solutions, including the influence of surface
tension. We use a plane polar coordinate system (r, θ) with origin at the centre of
the cylinder and measure θ in the sense of rotation with θ = 0 coinciding with the
downward vertical (figure 1). The radius of the cylinder is denoted by R, the filling
fraction by A, the rotation rate by Ω , and the interface height h(θ) where r = R−h(θ).
The fluid has density ρ, viscosity µ and surface tension γ . Throughout the discussion
below we assume that the film remains continuous.

As our interest concerns steady shapes, the fluid motion is described by the two-
dimensional time-independent Navier–Stokes equations for an incompressible flow

∇ · u = 0, (2.1a)

ρu · ∇u = −∇p + µ∇2u + ρg, (2.1b)

where u is the velocity vector, p is the pressure and g is the force per unit mass due
to gravity. We require the 2π-periodic solutions to satisfy the boundary conditions

u = ΩReθ at r = R, (2.2a)

n · T + p0n = γ κn at r = R − h(θ), (2.2b)

where T is the stress tensor, n is the unit normal vector to the interface directed away
from the fluid, p0 is the constant pressure inside the cylinder, and κ is the curvature
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of the free surface. By definition of the filling fraction A, we also require the solution
to satisfy the integral condition∫ 2π

0

[
h(θ) − h(θ)2

2R

]
dθ = πRA. (2.3)

2.1. Non-dimensionalization

We shall assume that the filling fraction is small A � 1, so that the film thickness
and its variations are expected to be small everywhere (as is verified after obtaining
the solution), and hence we utilize a lubrication approximation. Then, denoting
dimensionless variables with a tilde, we non-dimensionalize according to:

uθ = ΩRũθ , ur = AΩRũr, r = R(1 − Ar̃),

h(θ) = ARh̃(θ ), p =
µΩ

A2
p̃, κ =

A

R
κ̃.

}
(2.4)

Now, r̃ = 0 denotes the cylinder surface. Note that we have scaled the interface
curvature as O(A/R) since for nearly uniform films this is the magnitude of the
curvature variations that establish a capillary pressure gradient.

There are four independent non-dimensional parameters. The first two are the
Reynolds number R = ρΩR2/µ and the filling fraction A. The remaining two are a
gravitational parameter λ and the Bond number B, here defined as

λ =
A2ρgR

µΩ
, B =

ρgR2

Aγ
, (2.5)

representing, respectively, the ratio of gravitational to viscous forces, and the ratio of
gravitational to surface tension forces. Note that the product B/λ = µΩRγ −1A−3 is
a capillary number, representing the ratio of viscous to surface tension stresses, and
naturally appears when studying the influence of interfacial tension on free-surface
shapes as we do here.

The relationship between the three independent parameters we use to characterize
solutions, A, λ and B, and the parameters F, α, β and C used in the recent paper by
Tirumkudulu & Acrivos (2001) is F = A, α = A/

√
λ, β =

√
λ and C = µΩR/γ =

A3B/λ. We shall sometimes rewrite results in this notation to aid the reader.
In addition to the filling fraction being small, A � 1, we assume the Reynolds

number is not too large in the sense that A2R � 1, as is characteristic of many lubric-
ation analyses. The full dimensionless equations are given in Appendix A. Performing
an expansion using lubrication theory with the small parameter A, we retain viscous
terms O(A), gravitational terms O(Aλ) and surface tension terms O(AλB−1). This
approach will enable us to consider a range of values of the gravitational parameter
λ. Then the dimensionless continuity and momentum equations, with tildes dropped,
are

−(1 − Ar)
∂ur

∂r
+ Aur +

∂uθ

∂θ
+ O(A2) = 0, (2.6a)

∂p

∂r
+ Aλ cos θ + O(A2, A3R) = 0, (2.6b)

−(1 + Ar)
∂p

∂θ
+

∂2uθ

∂r2
− A

∂uθ

∂r
− λ sin θ + O(A2, A2R) = 0, (2.6c)
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subject to the boundary conditions

u = eθ at r = 0 (no-slip velocity condition) (2.7a)

∂uθ

∂r
+ Auθ + O(A2) = 0 at r = h(θ) (tangential stress condition) (2.7b)

p = p0 − λB−1κ + O(A2) at r = h(θ) (normal stress condition) (2.7c)∫ 2π

0

[
h(θ) − Ah(θ)2

2

]
dθ = π (integral condition). (2.7d)

Owing to the complicated nature of this free-boundary problem, the lubrication
approximation has been utilized extensively, as described in many papers given in
the introduction and references. Except for the unpublished work of Benjamin et al.
(1993), the influence of surface tension has not been investigated analytically.

2.2. Curvature approximations

The full expression for the non-dimensional curvature κ is

κ =
1

A

(
1 +

(
Ah′

1 − Ah

)2)−3/2[(
1

1 − Ah
+

Ah′′

(1 − Ah)2

)(
1 +

(
Ah′

1 − Ah

)2)

+
A2h′2

(1 − Ah)3
− A3h′2h′′

(1 − Ah)4

]
, (2.8)

where a prime denotes differentiation with respect to θ . Using only the assumption
that A � 1, but allowing for the possibility that |h′| = O(A−1), this approximates to
κ = 1/A + κ0 + Aκ1 + O(A2) where

κ0 =
h + h′′

(1 + (Ah′)2)3/2
, κ1 =

h2 + 2hh′′ + 2h′2

(1 + (Ah′)2)3/2
. (2.9)

In general we have used both (2.8) and (2.9), which assumes A � 1, in our
numerical simulations. We have had numerical difficulties using (2.8), apparently
due to cancellation of terms of comparable magnitude when A � 0.05. Otherwise we
have compared (2.8) and (2.9) and they yield the same results.

If it is also true that gradients are not too large in the sense that |h′| � A−1, then
a further approximation is valid: κ = 1/A + (h + h′′) + A(h2 + 2hh′′ + h′2/2) + O(A2).
In explaining our numerical results via analytical arguments, when |h′| � A−1 also
we shall use the further approximation κ ≈ κ0 = h + h′′ + O(A). (This approximation
is not made in our numerical simulations.) Note that the leading-order 1/A term in
equation (2.8) is a constant, and as only variations of curvature lead to contributions
to flow, this term does not appear in the final evolution equation for the film shape.

2.3. Derivation of the flux equation

We next obtain an equation for h(θ), retaining the influence of surface tension. The
details of the derivation are given in Appendix A. Solving equation (2.6b) subject to
the normal stress boundary condition (2.7c) yields

p = p0 − λB−1κ + Aλ(h − r) cos θ + O(A2, A3R, AλB−1), (2.10)

where we have indicated the order of magnitude of the error to be expected, which
we shall continue to do throughout this section. Substituting (2.10) into (2.6c) and
solving for the azimuthal velocity uθ subject to boundary conditions (2.7a) and (2.7b)
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leads to

uθ (r, θ) = 1 −
(
λ sin θ − λB−1 dκ0

dθ

)(
hr − 1

2
r2

)
−A

[
r − λ sin θ

(
1
3
r3 − hr2 + 3

2
h2r

)
+ λh′ cos θ

(
hr − 1

2
r2

)
− λB−1 dκ0

dθ

(
− 1

3
r3 + 1

2
hr2 − 1

2
h2r

)
− λB−1 dκ1

dθ

(
hr − 1

2
r2

)]
+O(A2, A2R, A2λ, A2λB−1). (2.11)

We integrate the continuity equation to find the constant dimensionless flux, q , defined
by

q =

∫ h(θ )

0

uθ (r, θ) dr, (2.12)

corresponding to an actual flux scaled by AΩR2. This yields the flux equation

q = h︸︷︷︸
(I)

− 1
3
λh3 sin θ︸ ︷︷ ︸

(II)

+ 1
3
λB−1h3 dκ0

dθ︸ ︷︷ ︸
(III)

− A

[
1
2
h2 − 1

2
λh4 sin θ + 1

3
λh3h′ cos θ︸ ︷︷ ︸

(IV)

+1
6
λB−1h4 dκ0

dθ
− 1

6
λB−1h4 dκ1

dθ

]

+ O(A2, A2R, A2λ, A2λB−1), (2.13)

where the numbered terms represent forces as follows: (I) – leading-order viscous,
(II) – leading-order gravity, (III) – leading-order surface tension, (IV) – first-order
gravity. This equation was previously given, in a slightly different notation, in the
unpublished study by Benjamin et al. (1993). We note that in the curvature expressions
(κ0, κ1) retention of the O(A2) terms which multiply h′2 is not, strictly speaking,
asymptotically consistent; nevertheless it is common to retain them since the O(A2)
terms make the equation uniformly valid, even when a thin nearly uniform film
connects to a deep nearly static pool (see § 3) (e.g. Wilson 1981).

We seek solutions h(θ) of equation (2.13) that are 2π-periodic and that satisfy the
integral boundary condition (2.7d). Here, the flux q is an unknown constant which
must be determined as part of the solution of the problem. The flux equation (2.13)
is studied in three different regimes of parameter space: when the viscous forces are
small, comparable to and large relative to the gravitational forces, corresponding to
the limits λ� 5, 2 � λ� 5 and λ� 2 respectively. When both surface tension and first-
order gravity are neglected, sharp transitions between qualitatively different solutions
occur at the critical values λ = 2.00 and λ = 4.86, but since these transitions are
smooth when equation (2.13) is solved (see also Tirumkudulu & Acrivos 2001) we use
the approximate value λ = 5 to characterize the transition at λ = 4.86. Rather than
numerically solving (2.13), we have instead found it more convenient to solve the
time-dependent lubrication problem and evolve towards steady-state shapes h(θ), as
described in Appendix B. The numerical methods used are based on those of Hosoi &
Mahadevan (1999). Steady states found by this approach correspond to the solution
of the time-independent problem and so yield q and h(θ). In order to quantify and
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understand the numerical results, we present analytical arguments that are based on
(2.13).

2.4. Qualitative discussion

In almost all previous theoretical and numerical studies, surface tension has been
neglected (B = ∞) and, for the case where first-order effects (O(A) terms in (2.13))
are also neglected, an upper limit of λ = 4.86 has been determined; there is no steady
solution h(θ) to the truncated form of (2.13) when λ exceeds this value (Benjamin
et al. 1993). (Note that the value λ = 4.86 differs slightly from the value that derives
from the critical condition given by Benjamin et al. 1993.) In the actual physical
problem, however, when λ is greater than this value there is a steady solution and
its detailed structure depends on the relative magnitude of the surface tension and
gravitational terms.

Tirumkudulu & Acrivos (2001) showed that inclusion of the first-order gravity term
leads to a solution when λ� 5, which in their notation corresponds to F/α = β � 2.2.
(The inclusion of first-order gravity also has important implications for the solution
in the limit 2 � λ� 5, which we discuss in § 4.) Their solution is valid when surface
tension is negligible, which leads to the restriction that an appropriately defined
capillary number must be large (discussed further below, see table 3). We find
numerically that when surface tension is significant (B finite) two distinct steady
solutions also exist when appropriately defined capillary numbers are small, and the
film thickness scales with rotation rate and material parameters in a quantitatively
different manner than obtained by Tirumkudulu & Acrivos (2001), even though the
solutions are qualitatively similar, i.e. there is a pool at the bottom of the cylinder with
thin films on either side. There is still likely to be an upper limit to λ corresponding
to the film becoming so thin that it is unstable and dewets, but this limit is beyond
the goal of the study presented here.

The order of magnitude of the gravitational parameter λ is particularly important
in determining the qualitative behaviour of the system. To illustrate this point, we
show in figure 2 the results of numerical simulations of (2.13) for λ ranging between
1 and 50. In all cases the Bond number B = 100 and filling fraction A = 0.1. The
film varies from a nearly uniform thickness characteristic of higher rotation speeds
(λ small) to highly non-uniform shapes that exhibit sharp gradients at lower rotation
speeds (λ large).

As a first set of comments we indicate some qualitative ideas that are important
in characterizing the solutions. When the value of the gravitational parameter λ� 5
and surface tension and/or first-order gravity effects are included, there is a steady
solution comprising a pool in the bottom of the cylinder and a thin film which is
pulled out by the rotating cylinder. We have identified scaling laws for both the pool
and the thin film in terms of λ and the Bond number for the distinctive features of
the film shape when surface tension is critical in setting the film thickness. Our results
describe the scaling for two distinct subcases, depending on the ratio of the cylinder
radius R to the capillary length (γ /ρg)1/2. When λ falls between two critical values,
2 � λ� 5, the viscous force is strong enough to pull fluid up from the bottom of the
cylinder but the gravitational force prevents the fluid from being pulled all the way
over the top. Fluid accumulates in the quadrant 0 � θ � π/2, as can be seen from the
λ = 3 curve in figure 2. Finally, when the value of the gravitational parameter λ is
less than the smaller of the two critical values, λ� 2, the film shape is nearly uniform
and the influence of surface tension is small. An analytic description of this shape in
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Figure 2. A range of solutions, showing the effect of variation of λ: (a) interface height
plotted as a function of θ using Cartesian axes, (b) interface height plotted using plane polar
coordinates. In all cases B = 100, A = 0.1. As λ increases from small to large, we see an
evolution from a nearly uniform film to a ‘deep’ pool at the bottom of the cylinder, which is
then connected to a thin film. It is important to recognize that if surface tension and first-order
gravity effects were neglected entirely then no solutions would exist for λ� 5.

the limit A < λ � 2 was given by Ruschak & Scriven (1976) and is extended slightly
in Appendix D.

Second, we discuss the way in which surface tension influences these different limits.
If gradients do not become sufficiently large for surface tension to become important,
surface tension will have little effect. This is true in two cases: (i) nearly uniform films
that occur when λ � 2 and (ii) the solution described by Tirumkudulu & Acrivos
(2001), in which a film is withdrawn from a pool of fluid in the bottom of the cylinder
(λ� 5 and large effective capillary number, see table 3). On the other hand, when
solutions have large curvatures in some region, the local effect of surface tension may
extend downstream and result in a quantitatively different asymptotic scaling of the
interface height over a significant range of θ . This is the case for the solutions we
present here, valid when λ� 5 and effective capillary numbers, defined below in table 2,
are small. Finally, when 2 � λ� 5, the zero-surface-tension solution with first-order
gravity effects neglected is discontinuous whereas the solution with either first-order
gravity (Tirumkudulu & Acrivos 2001) or surface tension effects included (or both)
is continuous. (We have demonstrated that only including surface tension leads to
continuous solutions numerically.) Qualitatively, as the Bond number decreases, i.e.
surface tension becomes stronger, the solutions have smaller curvatures. (The results
are also summarized in tabular form in table 3.)

Having commented on the dependence of the solution on λ and Bond number, we
describe the dependence on filling fraction A. For those cases where surface tension
effects are most significant, the dominant balance in (2.13) for most θ is between
terms (I), (II) and (III), and term (IV) is unimportant. When this is the case, the only
effect of the filling fraction A on the non-dimensional solution is in setting the values
of λ and the Bond number, and so it is not the actual value of the filling fraction A

that is important but rather its ratio to material and geometrical parameters. (The
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Figure 3. Plot of numerical solution to the full flux equation (2.13). The dimensionless
solution with λ = 500, B = 1, A = 0.3.

dimensional interface height has been scaled by AR and so the value of the filling
fraction is important in the dimensional solution.) The first-order gravity term (IV)
is sometimes important in the limit λ� 5 when there may be a flat (‘static’) pool in
the bottom of the cylinder, described by a balance between gravity terms (II) and
(IV). We discuss this limit in § 3.1. Also in the limit 2 � λ� 5, term (IV) smooths the
solutions which are discontinuous when both surface tension and first-order gravity
are neglected. The cases where term (IV) is important and surface tension is negligible
were discussed by Tirumkudulu & Acrivos (2001).

Other researchers have typically used a different non-dimensionalization, instead
scaling the dimensional film thickness by a factor of

√
λR. In this case, if surface ten-

sion and first-order gravity effects are retained, the only parameters appearing in the
flux equation are 1/

√
λB and A/

√
λ but the integral condition (2.7d) is also dependent

on λ. Although this non-dimensionalization is common, when including surface
tension we have found advantageous the use of the non-dimensionalization given in
(2.4), which makes the integral condition independent of λ and Bond number B.

3. Numerical and scaling results: λ� 5

When the cylinder is spinning sufficiently slowly, λ� 5, and much of the fluid sits in
a pool in the bottom of the cylinder, with a very small amount of fluid being pulled
out into a thin film covering its sides and top. We shall describe two new solutions
of this general form which arise in different regions of parameter space. Although
we have not obtained an explicit analytical solution for the interface profile h(θ),
asymptotic analysis and scaling arguments enable us to understand the qualitative
and quantitative trends in the numerical solutions and the mechanisms that dominate.
In figure 3, we show a typical numerical solution for h(θ) in the λ� 5 limit (A = 0.3)
and we also introduce some useful notation.

For the two solutions which we shall describe, surface tension is important in the
generation of the thin film as in the Landau–Levich–Derjaguin argument (Derjaguin
1943; Landau & Levich 1942). The difference between the solutions is in the pool,
which may be either almost flat or curved depending on the dominant force balance,
as shown in figure 4(a, b). There are three regions of the shape profile in which
the solution displays different qualitative behaviour and the dominant force balance
differs; these are
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Parameter balance
determining pool shape Necessary conditions for

(λ� 5 for a pool) film analysis to hold

B−3/5 � A � 1
A2B
λ

� 1, B � A−1

A � B−3/5 � 1
A2B
λ

� A2B6/5 � 1, B � A−1

Table 2. Conditions required for the analysis to hold in the pool and in the film regions when
λ� 5. The parameter A2B/λ = µΩR/Aγ is an effective capillary number. In the notation of
Tirumkudulu & Acrivos (2001), the effective capillary number is C/F .

Film

Fluid pool

hmax
hmax

(a) (b)

hfilm

Cylinder
Film

Fluid pool

hfilm

Cylinder

Figure 4. Plot of numerical solution to the full flux equation (2.13). (a) The dimensional
solution with λ = 500, B = 5, A = 0.3. (b) λ = 500, B = 1, A = 0.3.

(i) a pool region in the bottom of the cylinder where the dominant force balance
is between gravity (II) and first-order gravity (IV) or between gravity (II) and surface
tension (III);

(ii) a thin film where the thickness is set by a force balance between viscous (I)
and surface tension forces (III), with matching to the pool solution;

(iii) in the neighbourhood where the film re-enters the pool, there is a dimple
created by a force balance between viscous (I) and surface tension forces (III).

We consider each of these regions in turn below. In § § 3.1 to 3.3, we proceed by
giving the dominant balances and asymptotic scalings consistent with these balances.
In each case, we present numerical results that confirm the predictions and also
indicate breakdown of the scaling ideas. Restrictions on the validity of each result
are indicated throughout and are summarized in table 2. Finally, in § 3.4 we discuss
how the flux q varies as a function of λ and Bond number B.

3.1. The pool

As is evident in figure 3, for λ� 5 the film shape has a well-defined maximum
near θ = 0 and the pool has a well-defined width. We determine the scaling of the
maximum thickness of the film in the pool, hmax, and the width of the pool, 2	θ ,
by asymptotic analysis; 	θ is defined as 	θ = θ1 − θ2 + 2π where numerically we
take h(θ1) = h(θ2) = hmax/2 and 0 <θ1 < π/2, 3π/2 < θ2 < 2π. The numerical results
show that there is a slight asymmetry in the pool about θ = 0 arising from viscous
effects, but we neglect this in our scaling analysis. The results shown in this section
follow from balancing static forces in equation (2.13), although dynamics have an
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effect since apparent contact angles at the edges of the pool, which may be finite in
truly static situations, must be zero where a thin film is pulled out of the pool. These
results will be important in explaining the thickness of the film which coats the sides
and top of the cylinder, which will be analysed in § 3.2.

There are two subcases, according to the balance of parameters: in one case the
first-order gravity term (IV) is larger than the leading-order surface tension term (III)
and the dominant (static) balance is between the leading-order (II) and first-order
(IV) gravitational terms; as explained below, this occurs when B−3/5 � A � 1 and is
the case which is more likely to be observed. In the other case, the balance is between
leading-order gravitational effects (II) and surface tension (III), since the latter are
greater than the first-order gravity effects. Then the balance of parameters is shown
to be A � B−3/5 � 1.

We first consider the dominant balance between leading-order and first-order gravity
terms. The requirement that A � B−3/5 can be rewritten as R � A−1/3(γ /ρg)1/2, where
(γ /ρg)1/2 is the usual capillary length. Consequently the radius is large in comparison
to the capillary length and a flat pool forms at the bottom of the cylinder.

In the pool typical values of θ are small, so we use the approximation sin θ ≈ θ .
In equation (2.13), balancing leading-order (II) and first-order (IV) gravity terms
gives λh3

max	θ ≈ Aλh4
max/	θ . Since only a small amount of fluid is pulled out of the

pool, the integral boundary condition can only be satisfied if
∫ θ∗

−θ∗ h(θ) dθ ≈ π. (The
assumption that only a small amount of fluid is pulled out of the pool will be seen to
hold in § 3.2, where we shall obtain an expression for the film thickness.) These two
conditions yield the following functional form for h(θ) in the pool and scalings for
the pool height and width:

h(θ) =
1

A
log

(
cos θ

cos θ∗

)
, hmax ≈ 1

2A

(
3πA

2

)2/3

, 	θ ≈
(

3πA

2

)1/3

, (3.1)

where θ∗ is a measure of the extent of the static pool, as is indicated in figure 3.
Note that θ∗ ≈ 	θ (since θ∗ ≈ 2θ1 ≈ 4π − 2θ2). These results for the flat pool in
the gravity-dominated case could, of course, have been anticipated from a simple
geometric argument, and are in agreement with the pool profile generated in the
numerical simulation.

Tirumkudulu & Acrivos (2001) give a discussion of a solution for the pool region
when B−3/5 � A which is in fact valid for A< 1/2, i.e. when the extent of the pool
θ∗ takes any value less than π/2. In their notation, these constraints correspond to
C � F 4/3/β2 = α2/F 2/3 and F < 1/2. Tirumkudulu & Acrivos (2001) introduced
a first-order gravity term into their flux equation which had the feature that the
correct solution for h(θ) is obtained in the absence of flow in the limit of zero surface
tension. A different first-order gravity term is included in equation (2.13) which is
asymptotically valid for A � 1. The solution (3.1) is valid when θ∗ � 1 which, since
θ∗ ≈ A1/3, is consistent with the condition for the flux equation to be valid, A � 1.
The expression for the shape of the interface in the pool region (3.1) agrees at leading
order with the small-angle limit (θ ∗ � 1) of the solution in the pool derived by
Tirumkudulu & Acrivos (2001).

A more detailed analysis shows that the pool solution (3.1) has a non-zero contact
angle as θ → θ ∗, and therefore at the edges of the pool there is a static meniscus where
gravity balances surface tension in order to satisfy the zero effective contact angle
condition. Although the scaling can be derived by considering only linear curvature
terms, the nonlinear curvature terms are important in obtaining the exact solution.
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Figure 5. Plot of numerical solution to equation (2.13) with varying Bond number. In each
case, λ = 50 and A = 0.1. (Note that the range is −π � θ � π.)

The overall structure of the film profile in this case involves three regions: an outer
pool region, an intermediate matching region and an inner film region, as described
in more detail in § 3.2.

On the other hand, when A � B−3/5, the radius is small in comparison to the
capillary length and the pool that forms has a surface-tension-induced non-zero
curvature. As shown in figure 5, in this limit the shape of the pool varies according
to the value of the Bond number; in particular, the pool is narrower and deeper for
larger Bond numbers.

We assume that |h′| � A−1 (to be verified later) so that for our analytic estimates
the curvature in term (III) of equation (2.13) can be approximated linearly by
h + h′′, as discussed in § 2.2, and also that |h′′′| � |h′| as is usual in boundary-layer
approximations. A quantitative calculation of the interface shape in the static pool
can be made by balancing terms (II) and (III) in equation (2.13):

B sin θ = h′′′ ⇒ h(θ) = B cos θ + c1θ
2 + c2θ + c3, (3.2)

where c1, c2 and c3 are constants to be determined. We assume that the pool is
symmetric since the viscous forces are weak relative to the gravitational and surface
tension forces (i.e. fluid motion is negligible in the pool) which leads to the boundary
condition h′(0) = 0. The other boundary conditions are

h(θ∗) = 0, h′(θ∗) = 0,

∫ θ∗

−θ∗
h(θ) dθ ≈ π, (3.3)

where h′(θ∗) = 0 represents the zero contact angle condition. The interface height in
the pool is given by

h(θ) = B
(

cos θ +
sin θ∗

2θ∗ θ2 − cos θ∗ − θ∗ sin θ∗

2

)
, (3.4)

where the integral condition of equation (3.3) is used to determine θ∗. Since B � 1
and therefore θ∗ � 1, we can perform a small-angle expansion of the trigonometric
terms in the expression for θ∗ which leads to the prediction

θ1 − θ2 + 2π ≈ θ∗ =

(
45π

2

)1/5

B−1/5. (3.5)
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Figure 6. Scaling of (a) 	θ and (b) hmax for the pool in the bottom of the cylinder,
as defined in § 3.1. The solid lines represent the scaling expected from (3.5) and (3.6)
and the points are the data taken from the full numerical solution to (2.13). (Note that
log(45π/2)1/5 = 0.370, log[(45π/2)1/5/24] = 0.099.) λ = 1000 and A = 0.01 in all cases.

Similarly, we calculate the maximum interface height hmax, approximated by h(0), to
be

hmax ≈ h(0) =
1

24

(
45π

2

)4/5

B1/5. (3.6)

These results have been confirmed numerically. Figures 6(a) and 6(b) compare the
results of (3.5) and (3.6), the solid lines, with data extracted from many numerical
simulations. The scaling breaks down when the Bond number B becomes too small,
as expected, which here is for B � 3. Physically, at this point the width 	θ is no
longer small and this affects not only the scaling of 	θ but also the scaling of the
film thickness, which is discussed in detail below. We note that it has been possible
to determine a pool solution with a zero contact angle using only the linearized
curvature, as just justified, in the analytical arguments. The validity of using the
linearized curvature in the analysis is confirmed by the good agreement between the
theoretical prediction and the numerics, which include the full nonlinear curvature
term.

The leading-order gravity and surface tension terms in (2.13) are both O(λB2/5)
and the first-order gravity term (IV), which we have neglected, is O(AλB), and so
this analysis rests on the assumption that A � B−3/5 � 1. Also, since |h′| ≈ B2/5

and B � 1, gradients in this non-dimensionalization are large, and therefore it is
necessary to check that the linear approximation of the curvature is valid. With
(2.9) this simplification requires O(A|h′|) � 1, and we see that the above scaling
results require A � B−2/5. Since B is large, the stronger of these two conditions is
A � B−3/5 � 1. In the next section we shall use matched asymptotics to determine
the complete thickness profile, where the pool is the outer region and the film is the
inner region.

3.2. The thin film connected to the pool

We now consider the thin film that emanates from and leads back into the pool. The
thin film has small curvature variations and therefore surface tension has little effect
on the flow in the film itself, though nevertheless may set the film thickness through
its action in the neighbourhood where the film is pulled from the pool.

We define the film thickness hfilm = h(π), as shown in figure 4. The variations in the
film thickness due to gravity and surface tension effects are small in comparison to
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Figure 7. The Landau–Levich–Derjaguin problem: pull-out of a thin film when a substrate is
withdrawn vertically from a fluid bath.

the thickness of the film and so hfilm can be taken to describe the order of magnitude
of the approximately constant film thickness. In the limit that surface tension effects
can be neglected, a balance of the viscous and leading-order gravitational terms in
equation (2.13) for λ � 1 leads to the prediction

hfilm ≈ λ−1/2. (3.7)

Furthermore in the complete absence of surface tension and first-order gravity terms,
as mentioned earlier, there is no steady solution for λ� 5. However, we shall show
that for λ � 5 when surface tension effects are important, a scaling prediction as in
(3.7) is incorrect as the film thickness is set at a point leaving the pool where the
curvature variations are large. In other words, a capillary-pressure-driven flux occurs
in the thin film that counters the flux produced by viscous stresses (see figure 7).
To demonstrate the influence of non-zero surface tension we show below numerical
results of steady solutions with a scaling for hfilm dependent on λ and B, which is
different from (3.7).

The mechanism producing these new steady thin-film profiles is identical to that in
the Landau–Levich–Derjaguin pull-out problem (Derjaguin 1943; Landau & Levich
1942; Wilson 1981), which describes the thickness of the film deposited on a flat plate
or cylindrical fibre when pulled vertically out of a fluid reservoir at constant velocity
(see figure 7), and which appears in numerous other withdrawal problems (Bretherton
1961; Quéré 1999; Ratulowski & Chang 1989; Wilson & Jones 1983), though it
has not previously been recognized in the rimming flow problem. The average film
thickness is determined by asymptotically matching the curvature of the interface
where the film is pulled out of the pool and in the meniscus at the edge of the pool.
This structure is illustrated in figure 8.

As we have described in § 3.1, there are two possible pool shapes depending on
the balance of parameters. These give rise to two different film thicknesses. We now
describe the detailed analysis of the thin-film section treating both cases together, and
then separately describe the curvature matching to the outer pool region. In the inner
film region, equation (2.13) is written in terms of the rescaled variables

H (Θ) =
h(θ)

qi

, Θ =

(
3B
q3

i λ

)1/3

(θ − θ∗), (3.8)

where θ∗ is the angle at which the film is pulled out of the pool, indicated in figure 3.
We use a subscript on the flux qi since the value of the flux in the case A � B−3/5,
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Figure 8. The structure of the solution with the outer pool, matching and inner film regions.

qI, will differ from that in the case A � B−3/5, qII. H (Θ) satisfies

1 = H − λq2
i H

3

3
sin

[(
λq3

i

3B

)1/3

Θ + θ∗
]

+ H 3

[(
λq3

i

3B

)2/3
dH

dΘ
+

d3H

dΘ3

]
(3.9a)

H (Θ → ∞) → 1. (3.9b)

It can be verified a posteriori that the higher-order terms of (2.13) are negligible in
the film region, as assumed. In (3.10), we retain the terms that are of leading order in
the thin film, namely the viscous terms (1 and H ), and highest derivative term arising
from surface tension, H 3HΘΘΘ/3. (The restriction, in terms of an effective capillary
number, which arises from the assumption that the leading-order gravitational terms
are negligible is derived later in this section.) Equation (3.9) reduces to

1 = H + H 3 d3H

dΘ3
, H (Θ → ∞) → 1, (3.10)

which is, in fact, the Landau–Levich–Derjaguin problem (Derjaguin 1943; Landau &
Levich 1942). Numerically integrating this equation backwards out of the thin film
towards the pool, starting from a numerical approximation to the boundary condition
at Θ → ∞, we obtain H ′′(0) = 0.643. Then the curvature in the original dimensionless
variables is

h′′(θ∗) =
32/3H ′′(0)B2/3

qiλ2/3
(3.11)

and this must be matched to the (known) curvature of the meniscus at the edge of
the pool to obtain the flux qi .

We derive the film thickness by matching to the curvature of the meniscus separately
for the two cases A � B−3/5 and A � B−3/5. First, we consider the limit where
the pool balance is between leading-order (II) and first-order (IV) gravity forces,
A � B−3/5, as discussed in § 3.1. This feature of the problem is an extension of the
Landau–Levich–Derjaguin problem in which a plate is withdrawn vertically from a
fluid bath, and is closely related to a study by Wilson (1981), who investigated the
film coating both the outside of a rotating cylinder, partially immersed in a fluid
bath, and an inclined flat plate withdrawn from a fluid bath. The curvature of the
usual static meniscus derived from the full nonlinear Young–Laplace equation using
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our non-dimensionalization is

hsm

�2
sm

≈
√

2B(1 − cos θ∗)

A
, (3.12)

where hsm represents the order of magnitude of the film height in the static meniscus
and �sm represents that of the length scale over which the static meniscus exists.
This result can be obtained by integrating the gravity (II), surface tension (III) and
first-order gravity (IV) terms of the flux equation (2.13). The dependence on filling
fraction A and Bond number B can be rewritten in the more familiar dimensional
form as

hsm

�2
sm

≈

√
2ρg(1 − cos θ∗)

γ
. (3.13)

Equating equations (3.11) and (3.12) yields the curvature matching condition typical
of these problems:

h′′(θ∗) =
32/3H ′′(0)B2/3

qiλ2/3
=

√
2B(1 − cos θ ∗)

A
(3.14a)

⇒ qI = hfilmI
=

0.946

(1 − cos θ∗)1/2

A1/2B1/6

λ2/3
≈ 0.798

A1/6B1/6

λ2/3
. (3.14b)

The expression for the angle of withdrawal of the film from the pool θ∗ is taken
from (3.1), θ∗ ≈ (3πA/2)1/3. In deriving this result we have assumed that we can
approximate the gravitational force λh(θ)3 sin θ/3 by λh(θ)3 sin θ∗/3 in the meniscus
region, which Wilson (1981) shows corresponds to the requirement that R �

√
γ /ρg

or equivalently B � A−1 � 1. Finally, neglecting the leading-order gravity term in
the analysis of (3.9) requires that the condition λq2

i θ
∗ � 1 be satisfied (using the

small-angle approximation sin θ∗ ≈ θ∗), which in this limit results in the condition
A2B/λ � 1. A2B/λ is an effective capillary number. More detailed analysis shows
that the expression for film thickness (3.14b) is the leading-order term in an expansion
in terms of the parameter A2B/λ, and the result (3.14b) is asymptotically valid in the
limit A2B/λ → 0. All restrictions on the analysis are summarized in table 2. (We note
that (3.14b) simplifies to the Landau–Levich–Derjaguin result when θ∗ = π/2, and
that Wilson calculated the next term, of order A3/2B1/2 sin θ∗/λ(1 − cos θ∗)3/2.)

We verify the theoretical prediction of the film thickness dependence on λ and Bond
number B by comparing with the results of many numerical simulations. By plotting
the flux qI as a function of λ and B we have verified numerically that the scaling
with respect to the gravitational parameter λ is correct. Typical results are shown
in figure 9(a). Since the dependence on Bond number is weak, we have also plotted
qIλ

2/3 as a function of B alone to verify the scaling with respect to the Bond number
B. These results are shown in figure 9(b), where results are given over more than one
order of magnitude for B � 1. The theoretical value of the numerical prefactor is in
very good agreement with our numerical simulations.

Secondly, when A � B−3/5 � 1 and the pool balance is between leading-order
gravitational forces and surface tension forces, it is necessary to use a different
curvature matching condition since the curvature of the pool solution in the outer
region differs from that of the usual static meniscus. The curvature in the pool region
which enters the matching condition is now given by differentiating equation (3.4)
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and expanding about θ = θ∗, leading to the matching condition

32/3H ′′(0)B2/3

qIIλ2/3
=

1

3

(
45π

2

)2/5

B3/5 (3.15a)

⇒ qII = hfilmII
= 0.731

B1/15

λ2/3
. (3.15b)

As in the derivation of (3.14), the analysis to obtain (3.15) rests on the assumption that
B � A−1 � 1. In this case the condition λq2

i θ
∗ � 1, which arises from neglecting the

gravity term in the analysis of (3.9), corresponds to the requirement that B−1/5λ−1 � 1.
(In table 2 we indicate how the parameter B−1/5λ−1 can be rewritten in terms of the
effective capillary number A2B/λ, and summarize all the conditions necessary for the
analysis to hold.)

Numerical solutions based on (2.13) and the full curvature are shown in figure 10
and are compared with the asymptotic dependence predicted by (3.15b). The agree-
ment between the numerical and asymptotic results for dependence on λ and B is
very good.
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Figure 11. Numerical results showing the occurrence of dimples (a) when λ = 50, A = 0.1,
(b) when B = 10, A = 0.1.

The above results have demonstrated that at low effective capillary numbers the
singular effect of surface tension is significant. By including surface tension we have
found numerically steady solutions that agree with predicted scaling arguments. In
terms of the physical variables, the dimensional film thicknesses in the two cases
discussed above are

hfilmI
= 0.798

(µΩR)2/3

A1/3(ρg)1/2γ 1/6
, hfilmII

= 0.731
(µΩ)2/3R7/15

A2/5(ρg)3/5γ 1/15
, (3.16)

valid in the limits B−3/5 � A � 1 and A � B−3/5 � 1 respectively. The restrictions
on the analysis of both the pool and film region for the two solutions in the limit
λ� 5 are summarized in table 2.

3.3. The dimple

Figure 11(a, b) shows the region of the interface where the thin film re-enters the
pool and a dimple occurs. Such dimples are a universal feature of free surfaces in
regions where surface tension must smooth the sudden transition from a thin film to
a region with large curvature variations. Similar dimples are seen in other problems
such as when a falling film enters a pool (Wilson & Jones 1983), the translation of
large bubbles in fluid-filled capillary tubes described by Bretherton (Bretherton 1961,
see also Ratulowski & Chang 1989), in the Marangoni-driven motion of thin films
(Bertozzi, Munch & Shearer 1999) and in problems in which thin films line cylindrical
tubes (Jensen 1997).

In general, the region where a film enters a pool has a complex structure in
which ripples occur, each of which has a quantitatively different height scale and
occurs over a qualitatively different length scale, as shown by Wilson & Jones (1983).
(Theoretically, the ripples extending upstream into the thin film are infinite in number
but in reality they are damped so quickly that it is rare that more than one oscillation
is observed.) We briefly review the mathematical ideas of Wilson & Jones (1983) to
show how the structure of the equations leads to oscillatory behaviour in the film on
the side where it enters the pool but not on the side where the film is withdrawn
from the pool (Bretherton 1961; Wilson & Jones 1983). We consider the solution in
the particular instance that A � B−3/5.

The asymptotic analysis in the vicinity of where the film re-enters the pool is exactly
analogous to the analysis of the region where the film is pulled out, described in § 3.2.
Again, there are three regions: the inner film region, and intermediate matching
region and the outer pool region, as illustrated in figure 12. To analyse the initial
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Figure 12. The three different regions in the vicinity of the dimple, also indicating the
regions where linear and nonlinear oscillations occur.

small deviations from the film of uniform thickness we rescale h(θ) as in (3.8), and
rescale θ analogously

φ = (θ − 2π + θ∗)

(
3B
q3

I λ

)1/3

. (3.17)

We obtain the same equation but a different boundary condition compared to (3.10):

Hφφφ =
1

H 3
− 1

H 2
, H (φ → −∞) → 1. (3.18)

The boundary condition differs simply because rather than looking at the region
where the thin film is pulled from the pool, we are focusing here on where it re-enters
the pool. As φ → −∞ the solution H exhibits a decaying harmonic oscillation about
the constant value 1. This follows from substituting H (φ) = 1+ ε(φ) into (3.18) where
ε � 1 and linearizing in ε to obtain εφφφ = −ε, which has roots ε = eηkφ, k = 1, 2, 3

where η1 = −1, η2,3 = (1 ± i
√

3)/2. The solution must be bounded as φ → −∞ in
order to match to the uniform film and therefore the root arising from η1 can be
eliminated and a second root can be eliminated as well by a suitable choice of origin.
Since the chosen root has an imaginary part, the film exhibits decaying sinusoidal
oscillations as φ → −∞. Conversely, at the point where the film is pulled out from the
pool, the solution must be bounded as φ → ∞ and the appropriate root is −1, which
implies that the interface height decays monotonically to the constant film thickness.
These features are all reproduced in our numerical simulations.

As φ increases, the size of the oscillations increases and the linear approximation
used above breaks down. Nonlinear oscillations develop and can be analysed using
the methods of Wilson & Jones (1983). As in their problem, the film depth in the
final trough (visible as a dimple in our numerical results) is set by matching the
curvature to that of the static meniscus, which in the case A � B−3/5 involves
consideration of both the gravitational term and also the full nonlinear curvature
in the surface tension term. The details are different, however, and the analogous
analysis leads to the prediction that in this case the scaling of the interface height
with λ and Bond number B at the dimple hdimple, is identical to that of the film, hfilm.
In figure 13 numerical results are shown for the dimple height, defined as the smallest
thickness in the region of re-entry, to verify the scaling with respect to λ.
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Figure 13. Numerical results showing that hdimple ≈ O(λ−2/3) with B = 5, A = 0.3.
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Figure 14. (a) Plot of flux q as a function of λ in the theoretical limit of zero surface
tension neglecting terms O(A, Aλ). Crosses represent numerical results and the dot-dash curve

represents the theoretical prediction, q = 2/3
√
λ, for 2.00 � λ � 4.86. The solid curve represents

the theoretical prediction for λ � 2, described in Appendix D (D6b). The vertical dashed line
marks the transition to discontinuous shock solutions. (b) Plot of flux q as a function of λ
when surface tension and first-order gravity effects are included. Circles represent the results
for fixed finite Bond number B = 100, A = 0.1. The dot-dash curve represents the theoretical

prediction when surface tension and first-order gravity effects are neglected, q = 2/3
√
λ for

2.00 � λ � 4.86 (as in (a)), which remains a good approximation in the non-zero surface
tension case. The dotted curve indicates the theoretical prediction (3.14b). The vertical dashed
line indicates the largest value of λ for which the zero surface tension solution exists when
first-order gravity terms are also neglected.

The reason for this simple result is that the film thickness has been set to satisfy a
balance between viscous and surface tension forces and to match to the curvature of
the pool solution when it is drawn out. The film still satisfies these conditions when
it re-enters the pool since the effects of gravity in the thin film are too small to alter
the film thickness at leading order.

3.4. Flux

The relationship between the flux q and the gravitational parameter λ with surface
tension and first-order gravity effects neglected was established analytically by Moffatt
(1977) and verified numerically by Benjamin et al. (1993), and is shown in figure 14(a).
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Figure 15. Plot of numerical solution to equation (2.13) with λ = 3, B = 1000, A = 0.3,
showing the larger interfacial gradient at the edge of the region where fluid accumulates in
the quadrant 0 � θ � π/2.

This graph shows that when surface tension and first-order gravity are neglected, the
flux takes a value close to 1/2 when λ� 2, and when 2 � λ� 5, the flux takes the exact
value q = 2/3

√
λ. (The small reduction in flux as λ increases from 0 → 2 is discussed

in Appendix D and the results for 2 � λ� 5 will be discussed in § 4.)
If λ� 5, no steady solutions are predicted in the zero surface tension case when

first-order gravity terms are also neglected (Moffatt 1977). Figure 14(b) shows the
flux values of the steady solutions as a function of λ that are obtained numerically
when surface tension and first-order gravity effects are included at small effective
capillary numbers A2B/λ � 1. Our theoretical predictions for the value of the flux,
given by equation (3.14b), are also plotted for comparison. The numerical results
show that the theory incorporating surface tension provides a good prediction for
λ� 25. (The relationship between the flux q and λ in this limit has already been
shown to be q ≈ A1/6B1/6/λ2/3 when B−3/5 � A � 1 in figure 9.) In the limit that
λ� 5, B−3/5 � A � 1 and the effective capillary number A2B/λ � 1, the solution
described by Tirumkudulu & Acrivos (2001) (in which surface tension is negligible)
is valid and the corresponding flux is q = 2/3

√
λ + O(A) (Tirumkudulu & Acrivos

2001).

4. Numerical and scaling results: 2 � λ� 5

When 2 � λ� 5, the scaling results derived in the previous section in the limit λ � 5
are no longer accurate. Rather than having a pool structure with the fluid sitting in
the bottom of the cylinder, in the limit 2 � λ� 5 the viscous and gravitational forces
are of the same order of magnitude and some fluid is pulled up the sides and over
the top of the cylinder but some accumulates on the rising side of the cylinder. A
numerical solution of equation (2.13) for h(θ) in the non-zero surface tension case is
shown in figure 15, which illustrates the region where fluid accumulates. At the front
of this region the gradient of the interface is larger, and the solution exhibits a strong
asymmetry about θ = 0.

We briefly review in § 4.1 the established results for the case 2.00 � λ � 4.86, which
mainly concern the zero surface tension limit in which first-order gravity effects are
also neglected, and in § 4.2 we present results describing the effect of surface tension
on the film thickness for this range of λ.
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Figure 16. Plot of numerical solution to the flux equation in the zero surface tension case when
first-order gravity effects are also neglected, showing (a) a stable and (b) an unstable shock

when λ = 2.40, q = 2/3
√
λ = 0.43. The inset shows a plot of the numerical solution to the flux

equation when surface tension and first-order gravity are neglected with λ = 1.52, q = 0.6.

4.1. 2.00 � λ � 4.86 in the limit that surface tension and first-order gravity
are neglected

The flux equation (2.13) has been widely studied in the limit that surface tension and
first-order gravity effects are neglected (Benjamin et al. 1993; Johnson 1988; Moffatt
1977; O’Brien & Gath 1988; Ruschak & Scriven 1976; Tirumkudulu & Acrivos 2001;
Wilson & Williams 1997) in which case (2.13) reduces to a cubic algebraic equation
and the solutions are discontinuous. Some representative solutions of this equation
are shown in figure 16. Previous studies show that of the three roots of the cubic
equation, one is negative and therefore unphysical, one is discontinuous and the other
is continuous. Figure 16 shows the continuous (inset) and discontinuous solution
curves.

If 2.00 � λ � 4.86, q = 2/3
√
λ, the two positive roots meet at θ = π/2 (Benjamin et

al. 1993). Then, as illustrated in figure 16, the solution may ‘jump’ from the positive
continuous root curve up to the positive discontinuous root curve in the first quadrant
and transfer back to the positive continuous root curve at θ = π/2 (O’Brien & Gath
1988). The position of the jump is chosen such that the integral boundary condition,
approximated according to the assumption A � 1,∫ 2π

0

h(θ) dθ ≈ π (4.1)

is satisfied. Although ‘jumps’ satisfying this condition can be chosen in an infinite
number of ways, the only choice which results in a stable solution is when the solution
curve jumps up from the positive continuous curve to the positive discontinuous
curve in the first quadrant and then transfers back to the positive continuous curve
at θ = π/2, as shown in figure 16 (Benjamin et al. 1993). When λ< 2.00 the integral
condition is satisfied by the positive continuous root and no jump occurs; however,
as λ increases from 2.00 to 4.86 a shock develops at θ = π/2 and moves towards
θ = 0.

In practice, when surface tension and first-order gravity effects are neglected, it is
easier to calculate the critical values λ = 2.00 and λ = 4.86 by rescaling as in Benjamin
et al. (1993), taking the (rescaled) flux q = 2/3 and calculating the filling fraction
for two solutions: first, for the positive continuous root curve with no jump to the
positive discontinuous root curve, and secondly, for a solution with a discontinuity at
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Figure 17. (a) Plot of numerical solution to the full equations (2.13) with λ = 3, A = 0.1 and
B = 10, 100, 1000. Also shown is the solution to the truncated flux equation with both surface
tension and first-order gravity terms neglected. The solutions show smaller-amplitude, broader
regions of shape variation occurring for larger values of surface tension. The inset shows
the solution to the equation with infinite Bond number but including the first-order gravity
term generated using the numerical method described by Tirumkudulu & Acrivos (2001). Also
shown are the solution to the cubic equation in which both surface tension and first-order
gravity effects are neglected, and the solution for B = 100 when both surface tension and
first-order gravity effects are neglected. (b) Solution to (2.13) with λ varying, Bond number
B = 100 and filling fraction A = 0.1.

θ = 0. (Note that the positive discontinuous root curve has an integrable singularity
at θ = 0.) The critical values are then given by the square of the filling fraction. Using
our dimensionalization, the equivalent calculation would be to find the flux q such
that the solution is a positive continuous curve, and to find the flux q such that the
solution has a discontinuity at θ = 0. Then the critical values of the gravitational
parameter could be determined via the relation q = 2/3

√
λ.

4.2. 2 � λ� 5: surface tension effects

As mentioned above, in the zero surface tension limit in which first-order gravity
effects are also neglected, the solution has a discontinuity at leading order and the
lubrication approximation has broken down. It is necessary to consider first-order
gravity or surface tension effects in a region close to where the jump occurs in order
to obtain a continuous, physically realistic solution. Johnson (1988) and Tirumkudulu
& Acrivos (2001) examined numerically the effect of smoothing by the first-order
gravity term in the limit that surface tension is negligible and Benjamin et al. (1993)
solved for h(θ) numerically, including the first-order gravitational term in both the
zero and non-zero surface tension cases. Wilson, Hunt & Duffy (2002) analytically
calculated the smoothing effect of first-order gravity in the particular case λ = 2,
where h(θ) is continuous everywhere but h′(π/2) is discontinuous.

We now extend the work of Benjamin et al. (1993) to include surface tension and
first-order gravity terms and focus on the effect of different values of surface tension.
It was verified numerically that the nonlinear curvature may be approximated by
the linear curvature terms in this limit. Figure 17 provides numerical solutions that
indicate both qualitative and quantitative features of the solution, and shows that
as surface tension increases (B decreases), the region of significant shape variation
(i.e. where gradients of h(θ) are larger) moves in the direction of increasing θ . These
results are an extension of the observation made by Benjamin et al. (1993) that when
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Figure 18. (a) Schematic showing definitions of θ3 and θ4. (b) Numerical data for θ4 − θ3 as a
function of the Bond number B. The scaling appears to be weakly dependent on λ. A = 0.1
in all cases.

surface tension is non-zero the region of shape variation occurs at a larger value of θ

than (in the theoretical limit) when both surface tension and first-order gravity effects
are neglected. Also, as surface tension increases, the difference in interface height just
after and just before the region of shape variation decreases. The inset shows the
numerical solution for B = 100 and the solution obtained numerically with surface
tension neglected but including the first-order gravity term (Tirumkudulu & Acrivos
2001), for which the solutions in the region of shape variation only differ by small
amounts quantitatively.

We next consider the quantitative variations in the shape as the Bond number
B is varied. Defining θ3 to be the value of θ at which the local minimum occurs
just before the region of shape variation and θ4 to be that at which the local
maximum occurs just after the region of shape variation, as indicated in figure 18(a),
we can identify the following numerical scalings: θ4 − θ3 ∝ B−α(λ) where α(2.5) =
0.2912, α(3) = 0.2712, α(4) = 0.2397, α(4.5) = 0.2377. The function α(λ) has been
determined by a best-fit to the data shown in figure 18(b) and appears to be weakly
dependent on λ.

It has not been possible to justify this numerical scalings via formal matched
asymptotic expansions; however, some basic ideas can at least aid in qualitative
and a semi-quantitative understanding. The simplest approach to determine how
θ4 − θ3 scales with Bond number is to assume that in the vicinity of the region of
shape variation, the viscous, gravity and surface tension terms are all of a similar
magnitude (O’Brien & Gath 1988). When sin θ ≈ 1, taking the outer solution to be
h ≈ sin θ−1/2 ≈ 1 and balancing the viscous, gravitational and surface tension terms,
we predict θ4 − θ3 ∝ B−1/3. On the other hand if θ � 1 then sin θ ≈ θ and using
an outer solution h ≈ θ−1/2 (Benjamin et al. 1993; O’Brien & Gath 1988) leads to
the prediction θ4 − θ3 ∝ B−2/9. It is interesting to note that the exponents calculated
numerically lie between these two theoretical values.

5. Discussion and concluding remarks
We have examined three different regimes of thin-film flow inside a horizontal

rotating cylinder, covering a broad range of parameter space. Surface tension is
important in a number of ways, as indicated in table 3. In particular, inclusion of
surface tension sets the thickness of the thin film which coats the sides and top of
the cylinder at small effective capillary numbers when λ� 5. Also, non-zero surface



90 J. Ashmore, A. E. Hosoi and H. A. Stone

Surface tension and Surface tension and first-order gravity included
first-order gravity A2B/λ � 1 A2B/λ � 1 A2B/λ � A2B6/5 � 1

neglected B−3/5 � A � 1 B−3/5 � A � 1 A � B−3/5 � 1

5 � λ No steady Surface tension Surface tension
solution unimportant important

2 � λ� 5 Region of shape variation
Discontinuous Larger gradients reduced by first-order gravity or

surface tension

λ� 2 Small gravitational perturbation to uniform film; surface tension is unimportant

Table 3. Summary of results in the zero and non-zero surface tension cases, divided
according to the value of the gravitational parameter λ.

tension results in the occurrence of a dimple where the film re-enters the pool. When
gravitational and viscous forces are of the same order of magnitude, discontinuities
occur in the solutions to the equation with surface tension and first-order gravity
neglected, and the solution may be made continuous by surface tension or by the
first-order gravity term. Finally, when the ratio of gravitational to viscous forces is
small, surface tension has little effect on the interface shape. Inclusion of the effects
of surface tension has enabled us to obtain scaling relationships, in the spirit of the
classical Landau–Levich–Derjaguin analysis, covering a broader range of parameter
space than has previously been possible, as indicated in table 3.

The lubrication analysis used here is based on the assumption A � 1 since the
interface height is non-dimensionalized by the factor AR. Now on the other hand,
when λ� 5, B−3/5 � A and A = O(1) and the effective capillary number is small, the
physical situation is that of a deep fluid pool filling much of the cylinder with a thin
film coating the top, and again a Landau–Levich–Derjaguin argument may be utilized
to predict the film thickness at small effective capillary numbers, despite the moderate
filling fraction. As usual, the curvature between the thin film and the pool must be
matched, and the features of the deep pool are determined by a static calculation.

An important question to be addressed is when the solutions we have described
are observed experimentally. There are two issues to be considered. First, there
are the restrictions we have placed on the parameters R, λ, B and A (which have
been documented above). These restrictions are such that although it would be
difficult to achieve all of these regimes with one particular cylinder, given the limited
variation of surface tension that is possible, each regime can in principle be achieved
experimentally using a cylinder of an appropriate size.

Secondly, we must consider when the solutions are stable. Benjamin et al. (1993)
proved stability of the two-dimensional solutions under perturbations dependent on θ

alone when 2.00 � λ � 4.86 in the absence of surface tension and first-order gravity,
and Hosoi & Mahadevan (1999) performed numerical calculations which showed that
the two-dimensional solutions were stable to three-dimensional perturbations when
the Reynolds number is sufficiently small in the presence of surface tension. It has not
been possible to prove stability of the other solutions analytically. However, in each
case numerical solutions have been obtained by allowing the time-dependent equation
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to evolve to a steady state, and the two-dimensional profiles described above have been
obtained. Therefore it appears that these profiles are at least numerically stable under
perturbations dependent on θ alone, but the numerics do not imply stability under
perturbations which also depend on the axial coordinate. Experimental observations
by Benjamin et al. (1993) and by Thoroddsen & Mahadevan (1997) reveal the
existence of many different classes of space- and time-dependent states, including
those with axial variations and periodic temporal dependence. Nevertheless, the
work of Benjamin et al. includes observations of two-dimensional steady states when
0.357 < λ< 0.667, which we would expect to be the approximately uniform films that
are described in Appendix D, when 2.86 < λ < 5 which we expect to be the solutions
with regions of shape variation described in § 4 and by Tirumkudulu & Acrivos
(2001), and when λ� 5 which we expect to be of the form described in § 3 when
the effective capillary number is small and of the form described by Tirumkudulu
& Acrivos (2001) when the effective capillary number is large. The upper limit of λ
in the experiments was not given. When 0.667 < λ< 2.86 many different steady and
time-dependent flows with axial variations were observed.

Many questions remain about the surprisingly complex behaviour of this system.
Areas of possible interest in future research include analysis of the effects of inertia
in the presence of surface tension, which has been demonstrated numerically to
produce three-dimensional steady fingers by Hosoi & Mahadevan (1999), and further
analytical and numerical investigation of the time-dependent instabilities which have
been observed experimentally.

We thank J. Gordillo for helpful discussions, H.-C. Chang for useful comments and
A. Acrivos for constructive criticisms that improved the presentation. We gratefully
acknowledge the support of the Army Research Office (DAAG 55-97-1-0114) and of
PPG Industries.

Appendix A. Governing equations
The dimensional steady Navier–Stokes equations for an incompressible two-

dimensional flow in cylindrical coordinates are

1

r

∂

∂r
(rur ) +

1

r

∂uθ

∂θ
= 0, (A 1a)
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. (A 2)

We seek the velocity field (ur (r, θ), uθ (r, θ)) and pressure field p(r, θ) which satisfy
these equations and the boundary conditions (2.2a, b). Since

n =
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r
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)
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r
er + eθ

)
,

(A 3)
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the free-surface boundary conditions (2.2b) at r = R − h(θ) are

t · T · n = 0 ⇒
(

1 − h′(θ)2

r2

)
Trθ +

h′(θ)

r
(Tθθ − Trr ) = 0 (A 4a)

n · T · n = 0 ⇒ Trr +
2h′(θ)

r
Trθ +

h′(θ)2

r2
Tθθ = −p0 + γ κ, (A 4b)
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Non-dimensionalizing according to (2.4), the equations become
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∂ũr

∂θ
− ũ2
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+ A2D̃2ũr − 2A3

(1 − Ar̃)2
∂ũθ
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1 − Ar̃

)

= − 1

1 − Ar̃

∂p̃

∂θ
+ D̃2ũθ +
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The boundary conditions and the integral constraint on the fluid volume are

u = eθ at r̃ = 0, (A 8a)
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ũθ

(1 − Ar̃)

)]
+A2h̃′(θ)

(1 − Ar̃)

(
1

(1 − Ar̃)

∂ũθ
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∫ 2π
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dθ = π. (A 8d)
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One limit is A2R = O(1), in which case the effects of centripetal forces may be
studied (Ruschak & Scriven 1976). However, we assume that A2R � 1 and neglect
the inertial terms, focusing instead on the leading-order and first-order (O(A)) effects
of viscous, gravitational and surface tension forces. The equations and boundary
conditions (A 6), (A 8), with O(A2R) and O(A2) terms neglected, are those given in
(2.6), (2.7) and are the basis of our study.

Appendix B. Numerics
The numerical program used is that developed by Hosoi & Mahadevan (1999).

We consider the interface to be time-dependent h(θ, t) and the time-dependent non-
dimensional flux conservation equation is

(1 − Ah)
∂h(θ, t)

∂t
+

∂q(θ, t)

∂θ
= 0, (B 1)

where time has been scaled by Ω−1 and
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]
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and κ is given by (2.8). The inclusion of time dependence on time scales comparable
with and larger than Ω−1 can be studied with these equations, as described in the body
of the text and Appendix A, so long as the effective Reynolds number A2ρΩR2/µ is
small, which is assumed to hold here. Equations (B 1) and (B 2) are allowed to evolve
to a steady state, using an implicit time differencing scheme with time step 	t chosen
by a ‘step-doubling’ algorithm. Newton’s method with three iterations is used at each
time step.

The first-order error in 	t is eliminated via extrapolation in the following way. The
solution h(θ, t) is evolved forward in time in two different ways, first using one time
step of size 	t to give a solution we shall denote by h1(θ, t +	t) and, secondly, using
two time steps of size 	t/2 to give a different solution h2(θ, t + 	t). The first-order
error in 	t is eliminated by taking the extrapolated state to be

hextrapolated(θ, t + 	t) = 2h2(θ, t + 	t) − h1(θ, t + 	t). (B 3)

A non-uniform mesh is used to resolve the solution h(θ, t) and the nonlinear terms
are averaged before they are differentiated. Initial conditions for the solutions with
λ < 2 and 2 < λ< 5 were

h(θ, t = 0) = 0.5 + 0.4 sin θ, (B 4)

and for those with λ > 5 were

h(θ, t = 0) = 0.5 + 0.4 cos θ. (B 5)

Since all derivatives of these continuously differentiable functions are themselves
continuously differentiable, all terms in equation (B 1) were initially continuous and
remained so.

A number of other initial conditions were also used to probe for additional possible
steady-state solutions since it is not clear that the nonlinear flux equation (2.13) has a
unique solution. However, we always found that for the same values of the parameters
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λ, λB−1 and A reported here, different initial conditions always resulted in the same
steady state.

Appendix C. λ� 5, high effective capillary number
In this appendix we establish the constraints on the Bond number B and the

filling fraction A for the high effective capillary number solution, and the limit λ� 5,
presented recently by Tirumkudulu & Acrivos (2001). Like the two solutions valid
for low effective capillary numbers when λ� 5 presented in § 3, the solution in this
limit has a pool of fluid that sits at the bottom of the cylinder as viscous forces are
too weak relative to gravitational forces to pull the fluid up from the bottom. It also
has a film which is pulled out of the pool and which coats the sides and top of the
cylinder; however, unlike the thin films in the solutions of § 3, in this case gravitational
forces are important in the film and surface tension is unimportant in setting the
film thickness. The film solution bears a close resemblance to the films generated
by solutions valid in the limit 2 � λ� 5. In order to derive the limits of validity, we
describe the asymptotic scaling of the pool region and the transition region where the
film is pulled out of the pool.

The pool solution is identical to that described in § 3.1 for the low effective capillary
number solution in the limit B−3/5 � A � 1. The thin film is generated by a balance
between viscous and leading-order gravity forces. The flux equation (2.13) reduces
to a cubic equation for the interface height in this region since first-order gravity
and surface tension effects are both negligible. Since the pool and film have different
asymptotic scales, there is additionally a transition region where the film is withdrawn
from the pool where gradients are large and the first-order gravity term is important.
Using these ideas, we can calculate asymptotic scalings for the interface thickness and
the scale of θ over which variations occur in the pool, the transition region and the
thin film.

The arguments used to derive the solution in the pool region in § 3.1 apply here
and therefore the results of (3.1) are valid. In the thin film, a balance of the viscous
and gravity terms leads to the scaling

hfilm ≈ 1

(λθ∗)1/2
, (C 1)

where θ∗ � 1 denotes the angle at which the film is withdrawn from the pool and
we have again used the small-angle approximation for sin θ . From the pool balance,
θ ∗ ≈ 	θ ≈ A1/3 so that hfilm ≈ λ−1/2A−1/6. Variations in θ in the film occur over a
scale O(1).

In the transition region, the scale of θ-variations � is set by the requirement that
there is a smooth transition between the pool and the film. Viscous, gravity and
first-order gravity terms are all important and therefore

hfilm ≈ λh3
filmθ∗ ≈ Aλ

h4
film

�
⇒ � ≈ A1/2

λ1/2
. (C 2)

Since � ≈ A1/2/λ1/2 � 1, the curvature may be large and it is necessary to verify that
surface tension is negligible, as has been assumed. Comparing the size of the surface
tension term to the size of the viscous and gravitational terms in the transition region
gives rise to the condition

λB−1 H 4

�3
� 1

λ1/2A1/6
⇒ A2B

λ
� 1. (C 3)
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Figure 19. Plot of the two positive roots to the flux equation (2.13) for q = 2/3
√
λ in the

absence of first-order gravity and surface tension effects, given by (C 4a, b) (dashed lines), the
theoretical prediction (3.1) using θ∗ = 0.917 (dot-dash lines), and two numerical solutions with
λ = 600, B = 15000, A = 0.2 (solid and dotted lines). The solid line indicates the solution
obtained when both surface tension and first-order gravity effects are included; the dotted line
is the solution generated by neglecting surface tension effects but including first-order gravity
effects, using the methods described by Tirumkudulu & Acrivos (2001). Since A2B/λ = 1,
this solution is in the crossover region between the two asymptotic limits A2B/λ � 1 and
A2B/λ � 1. The inset shows the film region on a larger scale.

Including the contribution of the third derivative in the surface tension term leads to a
condition for validity of this solution which differs from the condition determined by
Tirumkudulu & Acrivos (2001). Overall, the constraints on the high effective capillary
number solution valid when λ� 5 are B−3/5 � A � 1 and A2B/λ � 1, as indicated
in the body of the text (see table 2). In the notation of Tirumkudulu & Acrivos
(2001), these constraints are F/α = β � 2.2, C � F 4/3/β2 = α2/F 2/3 and C/F � 1.

As observed by Tirumkudulu & Acrivos (2001), the flux q = 2/(3
√
λ) + O(A) as in

the limit 2 � λ � 5. We observe that using this information, the interface height h(θ)
is known analytically to within O(A) in both the pool region and the film region. The
pool shape is given by (3.1) for 2π − θ∗ <θ <θ∗ and the film thickness is given by the
formula of O’Brien & Gath (1988):

h(θ) =
2√

λ sin θ
cos

(
cos−1(−

√
sin θ)

3

)
when θ∗ <θ <

π

2
, (C 4a)

h(θ) =
2√

λ sin θ
cos

(
cos−1(−

√
sin θ) − 2π

3

)
when

π

2
< θ < 2π − θ∗. (C 4b)

In this formula, the principle value of the inverse cosine function is used. At
the points where the film is pulled out of the pool and where it re-enters, the
transition between the solutions in the two regions is made smooth by the first-order
gravity term. In figure 19, a numerical solution of equation (2.13), a second numerical
solution generated from a flux equation in which surface tension is neglected but first-
order gravity effects are retained (Tirumkudulu & Acrivos 2001), and the theoretical
predictions for the film region (C 4a, b) and in pool region are plotted. The theoretical
solution in the pool region is the function h(θ) given in equation (3.1), but since
θ ∗ ≈ 1 in this case and the analytical prediction for θ∗ given in (3.1) is valid only
when θ∗ � 1, here we obtain θ ∗ by numerically integrating the expression for h(θ)

in the pool and determining θ∗ such that the integral constraint
∫ θ∗

−θ∗ h(θ) dθ ≈ π is
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satisfied. This yields a value θ∗ = 0.917. There is reasonable agreement between the
theoretical prediction and the numerical solutions in the pool region and in the film
region.

This approach presented by Tirumkudulu & Acrivos (2001) for high effective
capillary numbers, described in this appendix by starting with the lubrication equation
(2.13), is valid when rotation is slow in the sense that λ� 5 but is sufficiently fast that
the effective capillary number is large. When rotation is slow in the sense that the
effective capillary number is small, the solutions are as described in § 3.

Appendix D. λ � 1

When the cylinder is spinning sufficiently fast, though not so fast that inertial effects
are important, the viscous forces are large in comparison to the gravitational forces
and λ� 2. The fluid is easily pulled up from the bottom of the cylinder, and hence
we would expect an approximately uniform film coating the inside of the cylinder for
any value of the surface tension. The shape of the interface and the flux q can be
expressed in the form of a power series in λ and the higher-order corrections to the
leading-order uniform interface shape and flux can be determined. Part of this work
was undertaken by Ruschak & Scriven (1976), and we summarize their results and
add further analysis below.

D. 1. A< λ< 1: gravitational perturbation

Following Ruschak & Scriven (1976) we consider λ � 1 and seek a power series
representation of the solution h(θ). We write

h(θ, λ) =

∞∑
k=0

λkhk(θ), q =

∞∑
k=0

λkqk, (D 1)

where hk(θ) are functions and qk are constants which are determined uniquely by
imposing periodic boundary conditions and the integral condition

1

2π

∫ 2π

0

hk(θ) dθ =

{
π, k = 0

0, k > 0.
(D 2)

Such a representation should be valid when A< λ � 1. Substituting (D2) into (2.13)
and neglecting terms O(A, Aλ, AλB−1), we find that the leading- and first-order
terms are

h(θ, λ) = 1
2

+ 1
24
λ sin θ + O(λ2), q = 1

2
+ O(λ2), (D 3)

as first determined by Ruschak & Scriven (1976). The first two terms are independent
of surface tension, which affects only terms O(λ2).

We continue to O(λ2) in order to determine an analytical approximation to the
reduction of the flux observed in figure 14. Surface tension does affect the second-
order solution and it is necessary to make an assumption about the magnitude of the
parameter λB−1. When λB−1 � O(1), the second-order term is

h2(θ) = q2 + 1
192

+ a cos 2θ + b sin 2θ, (D 4)

where the constants a, b satisfy the equations

λB−1a + 4b = 0, (D 5a)

4a − λB−1b = − 1
48

. (D 5b)
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Figure 20. Plot of numerical solution to full equations and analytical solution with
B = 10, A = 0.1. The solid lines represent the numerical solution to the full equation
(2.13) and the dashed lines represent the theoretical results from (D4) taking values of a and
b as given by (D6a).

This leads to solutions

a = − 1

12(16 + (λB−1)2)
, b =

λB−1

48(16 + (λB−1)2)
, (D 6a)

q = 1
2

− 1
192

λ2 + O(λ3). (D 6b)

The approximate theoretical solution (D 4) and the full numerical solution are
plotted in figure 20 for λ = 0.5, 0.75, 1. This illustrates that while for λ = 0.5
the approximation is good, there is some error when λ = 1. Higher-order terms may
also be found, thereby giving better approximations to the reduction in the flux.
However, the accuracy obtained just using the first correction term is reasonable
and when λ = 2 the values of the two different theoretical estimates of the flux are
1/2 − λ2/192 = 0.479 and 2/3

√
λ = 0.471.

Benjamin et al. (1993) found numerical solutions for the flux as a function of
the rotation rate � in the zero surface tension case. The asymptotic behaviour they
observe is q = O(1) as λ → 0 in accordance with our result (D 3). A comparison of
equation (D 6) and our numerical results with zero surface tension and without the
first-order gravity term is shown in figure 14(a).

We can now predict the flux for a wide range of λ using the prediction from this
appendix when A< λ� 2 and that from § 3 when 2 � λ.
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